Free Shell Live

Project Retrospective Assessment
 v1.0
Team Extreme
Jonathan Birch

Bryan Kimbro

Mark Sparks

Greg Chabala

Contents


31. Introduction


32. Project Schedule Evolution


42. Problems Encountered


4A.
Delays in Creation of Publish-to-Web


41. Difficulties in Establishing a Dynamic Web-Based Medium


52. Difficulties in Constructing a JavaScript-Based Inference Engine


6B.
Delays in Development of Knowledge Base Editor Features


61.
Difficulties in Updating Print


62.
Difficulties in Applying New Save File Format


6C.
Interface Design Issues


7D.
Difficulty Impelementing Completeness and Contradiction Checking


74. Hindsight


7A.
Abandon Original FreeShell Code


8B.
Allow more Time for Initial Research


85. Conclusion




1. Introduction
This document represents a post-mortem analysis of the FreeShell Live project. The following pages contain an assessment of the effectiveness of our original project plan as well as the decisions made during the course of its implementation.
2. Project Schedule Evolution
Our original fall schedule called for us to rapidly create a simple version of the publish-to-web feature and also quickly correct the bugs in the knowledge base editor from the original FreeShell. Following this, we intended to incorporate the simpler of the desired new features into the knowledge base editor. Evolutionary improvement of both systems was to follow.


[image: image1.emf]ID Task Name Start Finish Duration

Dec 2005 Oct 2005 Nov 2005 Sep 2005

9/25 8/28 9/18 10/23 11/27 11/6 10/16 9/11 10/9 10/2 12/4 8/21 9/4 11/20 10/30 11/13

1 10d 9/2/2005 8/22/2005 Code initial version of publish-to-web

8d 9/14/2005 9/5/2005

Test and elicit feedback for initial 

publish-to-web version

10d 9/2/2005 8/22/2005 Fix Bugs in KBE

10d 9/16/2005 9/5/2005 Code additional desired KBE features

8d 9/28/2005 9/19/2005

Test and elicit feedback for Initial 

version of KBE

5d 9/23/2005 9/19/2005 Code second version of publish-to-web

8d 10/5/2005 9/26/2005

Test and elicit feedback for second 

publish-to-web version

5d 10/7/2005 10/3/2005 Code second version of KBE

5

5d 8/26/2005 8/22/2005

Develop test plan for initial publish-to-

web

7

5d 9/23/2005 9/19/2005

Develop test plan for second version of 

publish-to-web

3

2

6

5d 9/2/2005 8/29/2005

Develop test plan for initial version of 

KBE

9

10

11

18

17

15

13

12

5d 10/14/2005 10/10/2005 Code third version of publish-to-web

5d 10/14/2005 10/10/2005

Develop test plan for third version of 

publish-to-web

5d 10/21/2005 10/17/2005 Test third publish-to-web version

14

19

5d 10/7/2005 10/3/2005

Develop test plan for second version of 

KBE

5d 10/14/2005 10/10/2005 Test second version of KBE

20

21

22

23

10d 11/4/2005 10/24/2005 Integrate publish-to-web into KBE

10d 9/30/2005 9/19/2005 Develop initial product documentation

5d 10/28/2005 10/24/2005 Develop test plan for complete system

5d 11/11/2005 11/7/2005 Test complete system

24 10d 11/25/2005 11/14/2005 Fix errors in complete system

25 5d 11/11/2005 11/7/2005 Revise product documentation

26 5d 12/2/2005 11/28/2005 Perform final delivery activities

2d 9/16/2005 9/15/2005 Revise initial publish-to-web design 4

2d 9/30/2005 9/29/2005 Revise initial KBE design 16

2d 10/7/2005 10/6/2005 Revise second publish-to-web design 8

-Full Team

-Web Publishing Development (Jonathan Birch, Mark Sparks)

-KBE Development (Greg Chabala, Jonathan Birch)

-Testing (Bryan Kimbro, Mark Sparks)

-Integration (Jonathan Birch, Greg Chabala)

-Documentation Team (Greg Chabala)


Figure 1 - Original Fall Schedule

The actual progress of our project during the implementation phase diverged significantly from this plan. There were two major delays early in the project that forced us to drop several of the revision cycles from our original schedule. Once these delays were addressed, the remainder of our project continued rather smoothly.

[image: image2.wmf]ID

Task Name

Start

Finish

Duration

Dec 

2005

Oct 

2005

Nov 

2005

Sep 

2005

9

/

25

8

/

28

9

/

18

10

/

23

11

/

27

11

/

6

10

/

16

9

/

11

10

/

9

10

/

2

12

/

4

8

/

21

9

/

4

11

/

20

10

/

30

11

/

13

1

45

d

10

/

21

/

2005

8

/

22

/

2005

Code initial version of publish

-

to

-

web

2

d

10

/

25

/

2005

10

/

24

/

2005

Test and elicit feedback for initial 

publish

-

to

-

web version

36

d

10

/

10

/

2005

8

/

22

/

2005

Change save

, 

open and print to new 

format

5

d

8

/

26

/

2005

8

/

22

/

2005

Develop test plan for initial publish

-

to

-

web

3

2

5

d

9

/

2

/

2005

8

/

29

/

2005

Develop test plan for KBE

5

6

7

8

6

d

11

/

9

/

2005

11

/

2

/

2005

Code second version of publish

-

to

-

web

5

d

10

/

14

/

2005

10

/

10

/

2005

Develop test plan for second version of 

publish

-

to

-

web

5

d

11

/

16

/

2005

11

/

10

/

2005

Test second publish

-

to

-

web version

9

10

4

d

10

/

31

/

2005

10

/

26

/

2005

Integrate publish

-

to

-

web into KBE

6

d

11

/

16

/

2005

11

/

9

/

2005

Develop initial product documentation

5

d

11

/

7

/

2005

11

/

1

/

2005

Test complete system

10

d

11

/

14

/

2005

11

/

1

/

2005

Fix errors in complete system

16

5

d

11

/

23

/

2005

11

/

17

/

2005

Revise product documentation

5

d

11

/

21

/

2005

11

/

15

/

2005

Perform final delivery activities

5

d

11

/

7

/

2005

11

/

1

/

2005

Revise initial KBE design

2

d

10

/

27

/

2005

10

/

26

/

2005

Revise publish

-

to

-

web design

4

-

 

Full Team

-

 

Web Publishing Development 

(

Jonathan Birch

, 

Mark Sparks

)

-

 

KBE Development 

(

Greg Chabala

, 

Jonathan Birch

)

-

Testing 

(

Bryan Kimbro

, 

Mark Sparks

)

-

 

Integration 

(

Jonathan Birch

, 

Greg Chabala

)

-

 

Documentation Team 

(

Greg Chabala

)

13

15

12

11

14


Figure 2 - Actual Fall Schedule
2. Problems Encountered
A. Delays in Creation of Publish-to-Web
Our team required nearly nine weeks to complete the initial version of the publish-to-web feature, a dramatic expense beyond the anticipated two weeks. Two distinct factors contributed to this delay.

1. Difficulties in Establishing a Dynamic Web-Based Medium

Our design for the publish feature required that no server be required for the actual execution of published expert systems. This meant that we could not rely upon server side scripting languages or a server-based application to run published files. 
Because a published expert system must have the ability to update its interface to present the user with distinct series of questions, and because of the high potential branching factor, simple HTML could not be used. We had intended to use a self-submitting form with an HTML and JavaScript base that would update its interface iteratively. This proved to be impossible. 
A revised attempt was made to create a self-writing form using the Document.write command in JavaScript. This necessitated that the code rewrite itself during each refresh cycle, requiring the program to work as a quine. Unfortunately, standard JavaScript interpreters break down when used in this way.
A workable solution was found using the innerHTML property, which allows subsections of a JavaScript form to be selectively rewritten on the fly. However, a delay of roughly two weeks was incurred while addressing this problem.

2. Difficulties in Constructing a JavaScript-Based Inference Engine

Our project plan called for the inference engine included in published expert systems to be constructed by using the code for the original FreeShell inference engine as a reference. Our expectation was that this would save us the trouble of researching the logic and algorithms needed to create an inference engine and also provide us with a reference for our program architecture.
Unfortunately, the original FreeShell inference engine code proved extremely difficult to interpret. The C++ source for this module was only sparsely commented, incorporated seemingly random variable names, contained large amounts of non-functional and redundant code, and lacked a clear logical structure. Actually understanding this code required that one of our team members read through it, restructuring and simplifying it while taking care not to alter its original function.
After the code’s functionality was understood, it was discovered to be essentially non-functional. The inference engine included with the original FreeShell was known to present some runtime inconsistencies, and we discovered that the cause for this problem was that the system only simulated proper operation. This problem forced us to redesign the inference engine itself, essentially from scratch.

While we were able to borrow some of the architecture and logic from the original inference engine code, the effort required to rework the system into one that would operate properly proved considerable. A large amount of time was spent simply researching the different ways an inference engine could operate. In order that we would have time to complete the major desired functions of the program, we negotiated with our client to place limits on the functionality of the published inference engine. In particular, numeric variables in conclusions were designed to operate in a somewhat improper fashion.
In combination with our technical difficulties, this problem stretched out the initial publish-to-web development to its actual required time of nine weeks.

B. Delays in Development of Knowledge Base Editor Features

We were able to port the original source code for the Knowledge Base Editor from Visual Basic 6.0 to Visual Studio during the spring semester, and many of the bugs in the original code were corrected much more quickly than we had anticipated. This meant that the time we had originally scheduled for addressing these issues was free to be applied elsewhere. However, there were a number of specific features that proved more difficult to implement than originally planned. In combination, the bug fixes and initial feature additions for the knowledge base editor that we had scheduled to be completed in four weeks required slightly more than seven weeks to finish.
Two features in particular account for the majority of this additional time cost.

1. Difficulties in Updating Print

The way printing is handled in Visual Basic .NET is entirely distinct from the way it is done in Visual Studio 6.0. This meant that following the port of code to the new language, the original print features of the knowledge base editor became completely non-functional. One of our team members needed to apply time to researching how printing operates in Visual Basic .NET, and a fair amount of time was lost in this process.
2. Difficulties in Applying New Save File Format

Part of our system design involved a replacement of the file formats used by the original FreeShell with a human-readable format that could be edited outside of the program. Although the actual implementation of this format change was only somewhat difficult, our team encountered problems early on with the architecture of the original knowledge base editor. The interface-centric model used to construct the system, which entirely lacks a data layer, greatly complicated the creation of new code until our team had become used to working with it.
In addition to these problems, the complications involved with the implementation of the publish-to-web meant that it was not possible for team members working on that part of the project to assist or advise members working on the updates to the knowledge base editor. This division of the team led to some team members encountering problems that other team members might have more easily solved if they had become aware of the situation early on.

C. Interface Design Issues

Because many of the problems in the original FreeShell arose from inherent issues in the interface design of the knowledge base editor, a redesign of this interface was incorporated into our original project plan. However, once we began implementation of this design we realized that it lacked key features. In particular, our redesigned rule editor did not allow for multiple “if “or “then” clauses. Redesigning the rule editor to incorporate this functionality proved difficult, and it was necessary to investigate several designs before a satisfactory one was found.
Later, during acceptance testing, our client had difficulty understanding this portion of the interface, and after discussing the problem we decided that further revision was necessary. In total, roughly three weeks were spent revising this section of the interface.

D. Difficulty Implementing Completeness and Contradiction Checking

Our original contract requested that we attempt to implement completeness checking and contradiction checking features in the knowledge base editor. However, because of the lack of a data layer in the original knowledge base editor design, all data is stored in the string format it is displayed in. This makes symbolic analysis of variable and rule data extremely difficult in the knowledge base editor.
In fact, the implementation of these features would almost certainly require the creation of a data layer in the architecture of the knowledge base editor, with symbolic storage of variable and rule data. This would constitute a near-total redesign of the system. Because our client strongly urged us to reuse as much code as possible from the original FreeShell, and because of the other problems we have encountered in this project, we have decided to abandon these features in this version.

4. Hindsight
In retrospect, there are a few decisions we could have made differently that would have significantly contributed to the success of this project.
A. Abandon Original FreeShell Code

In hindsight, we would have been much better off if we had used the original FreeShell code for reference only rather than trying to incorporate it into our own project. Although our client urged us strongly towards the course of action we took, the problems we encountered in porting the Visual Basic code to Visual Studio, the delay we experienced attempting to interpret the original inference engine code, and the time losses we encountered dealing with the strange architecture of the original knowledge base code all could have been avoided if we had just rebuilt the entire program from scratch.

It seems like it is almost certainly the case that we could have built a better product in less time if we had simply started over. The costs we have encountered in dealing with the existing system seem like they far outweigh whatever time we would have lost rebuilding the basic system.
B. Allow more Time for Initial Research

Although the evolutionary delivery model we used to create our schedule did provide us with sufficient flexibility to still produce a workable product despite the delays we encountered, we would have been better off if we simply had allowed more time for the initial research-oriented aspects of the project, the creation of the publish-to-web feature and the analysis of the original FreeShell code.
5. Conclusion

Although we have encountered several major problems in the development of this project, it seems safe to consider FreeShell Live a success. We have produced a usable program that accurately performs all of the minimum required features of our contract, as well as a few of the optional ones. Although we have been unable to complete some of the original planned features, these are not strictly necessary and might perhaps be implemented by a future senior project team.










_1175332381.vsd
Tasks


￼


￼


1


￼


￼


￼


￼


Text



_1195890045.vsd
Tasks


￼


￼


1


￼


￼


￼


￼


Text



